THE DECARBOXYLATIVE ELIMINATION REACTION OF A β , γ -EPOXYACID. A ROUTE TO ALLYLIC ALCOHOLS

W. Clark Still, Jr., Arthur J. Lewis and David Goldsmith Department of Chemistry, Emory University, Atlanta, Georgia 30322, U.S.A. (Received in USA 5 March 1971; received in UK for publication 30 March 1971)

Recent communications by $\text{Sims}^{1,2}$ and Winstein³ have described the utility of the decarboxylative elimination reactions of β,γ -cyclopropylcarboxylic acids in the synthesis of angularly methylated decalin systems. We wish to report here the finding that pyrolysis of a β,γ -epoxyacid leads <u>via</u> a decarboxylative-elimination pathway to an allylic alcohol; a potentially widely applicable route to this class of compounds.

As part of a terpene synthesis program we required the allylic alcohol $\underline{1}$. We attempted to prepare $\underline{1}$ by two relatively standard methods. First, dihydro-pcresol methyl ether was converted directly to the unsaturated ketal $\underline{2}^4$. Epoxidation of $\underline{2}$ with m-chloroperbenzoic acid yielded $\underline{3}$. Contrary to expectation from analogous published examples⁵ when $\underline{3}$ was treated with lithium diethylamide in ether the endocyclic unsaturated tertiary alcohol $\underline{4}$ (nmr: δ 1.3, singlet, $-\dot{C}$ -CH₃; δ 5.63, AB quartet, J=10.4 Hz, H-C=C-H) was obtained rather than the methylene cyclohexanol $\underline{1}$. Accompanying $\underline{4}$, and in greater proportion, was the aromatic ether $\underline{5}$. Modification of the reaction conditions by the substitution of tetrahydrofuran for ether as solvent resulted only in an increase in the yield of 4.

1421

A second attempt to prepare <u>1</u> was made employing photosensitized oxygenation⁶. Treatment of <u>2</u> in pyridine solution with oxygen in the presence of hematoporphyrin afforded a mixture of allylic alcohols <u>1</u> and <u>4</u> in yields (glpc) of 48% and 37% respectively. (In view of published mechanistic suggestions⁶ and previous synthetic applications⁷ of this oxygenation reaction the factors resulting in the production of <u>4</u> by this process require further investigation.)

A successful route to $\underline{1}$ was developed in the following manner. Lithiumammonia reduction of p-methoxyphenylacetic acid afforded $\underline{6}$ (95% yield). Transketalization between $\underline{6}$ and the dioxolane of methyl ethyl ketone in the presence of Dowex 50-W-X8 resin give $\underline{7}$ (m.p. 71-74; 93% yield; nmr: δ 3.03, multiplet, $\underline{-CH_2}$ -CO₂H; δ 5.5, broad multiplet, -C=C-) and epoxidation of the latter (m-chloroperbenzoic acid) yielded the epoxyacid $\underline{8}$ (m.p. 103-104 (dec.); 94% yield; nmr: δ 3.06, triplet, $C \xrightarrow{0} C - H$; δ 2.56, singlet, $-CH_2$ -CO₂H).

By analogy with the thermal decompositions of β , γ -unsaturated acids⁸ and β , γ -cyclopropyl acids <u>8</u> ought to undergo decarboxylative elimination as in <u>i</u> to <u>1</u>. This process was realized by heating <u>8</u> in toluene under reflux for 3.5 hours. Under these conditions a 98% yield of <u>1</u> (nmr: δ 3.83, singlet, 4H, -O-CH₂CH₂-O-; δ 4.0, multiplet, 1H, O-CH; δ 4.65, broad, 1H; 4.83, broad, 1H, C=C H) was obtained.

The general applicability of this route to the synthesis of other allylic alcohols is under investigation.

Acknowledgment: We wish to thank the National Science Foundation for a Research Grant, GP-9542, in support of this work.

References

- 1. J. J. Sims, J. Am. Chem. Soc., 87, 3511 (1965).
- 2. J. J. Sims and L. H. Selman, Tet. Let., 1969, 561.
- 3. S. Winstein, T. Hanafusa, and L. Birladeanu, J. Am. Chem. Soc., 87, 3510 (1965).

- 4. Combustion analyses of all new compounds reported are in agreement with the indicated molecular formulas. Infrared, nmr, and mass spectra of all new compounds are compatible with the indicated structures.
- J. K. Crandall and Luan-Ho C. Lin, J. Org. Chem., <u>33</u>, 2375 (1968); <u>ibid.</u>, <u>32</u>, 435 (1967).
- 6. Alex Nickon and J. F. Bagli, J. Am. Chem. Soc., 83, 1498 (1961).
- 7. R. A. Bell, R. E. Ireland, and L. N. Mander, <u>J</u>. <u>Org</u>. <u>Chem</u>., <u>31</u>, 2536 (1966).
- R. T. Arnold, O. C. Elmer, and R. M. Dodson, J. Am. Chem. Soc., <u>72</u>, 4359 (1950), and references cited therein.